## SIGNALS AND SYSTEMS

- $H(2) = \frac{z(3z-4)}{(z-0.5)(z-0.2)}$ What about the stability of system in 1.
- A. system is stable
- В. unstable
- C. stable at 0.4
- D. cant say
- Which one most appropriate dynamic system? 2.
- y(n) + y(n-1) + y(n+1)A.
- В. y(n) + y(n - 1)
- C, y(n) = x(n)
- y(n) + y(n-1) + y(n+3) = 0D.
- An energy signal has G(f) = 10. Its energy density spectrum is 3.
- 10 A.
- Β. 100
- C. 50
- D. 20
- If  $\mathcal{E}[f(t)] = F(s)$ , then  $\mathcal{E}[f(t T)] =$ 4.
- est F(s) B. est F(s) C. F(s)/11est D. F(s)/11est
- 5. If transfer function of a system is H(z) = 6 + z-1 + z-2 then system is
- A. minimun phase
- B. maximum phase
- C. mixed phase
- D. none
- The period of the function  $\cos \frac{\pi}{4}(k-1)$  ? 6.

Which one is a linear system?

$$A.y[n] = x[n] \times x[n-1]$$

$$B.y[n] = x[n] + x[n - 10]$$

$$C.y[n] = x^2[n]$$

Laplace transform of a pulse function of magnitude E and duration from t = 0 to t = a is

A.E/s
B.
$$\frac{E}{s}$$
 e<sup>-as</sup>

$$C.E\left(\frac{1}{s} - \frac{1}{s} e^{as}\right)$$

$$D.\frac{E}{s^2}(1-e^{as})$$

5(s + 250)

If 
$$I(s) = \frac{s(s + 100)}{s(s + 100)}$$
, initial value of  $i(t)$  is

The analog signal m(t) is given below m(t) =  $4 \cos 100 \text{ pt} + 8 \sin 200 \text{ pt} + \cos 300 \text{ pt}$ , the 10.

The ROC of sequence in the Z.T. of sequence  $x[n] = a^n \cup [n]$  is 11.

A. 
$$z>a$$

C. 
$$|z| > a$$

D. 
$$|z| < a$$

- In Laplace transform, multiplication by e<sup>-at</sup> in time domain becomes 12.
- translation by a in s domain A.
- translation by (-a) in s domain B.
- C. multiplication by e-as in s domain
- D. none of the above
- A function having frequency f is to be sampled. The sampling time T should be 13.

- D. ナッカ
- 14. The final value theorem is

- B. 12
- C. 20
- D. - 20
- Inverse Fourier transform of sgn ( $\omega$ ) is 16.
- SIA A.
- B.
- U(t) C.

- If  $I(s) = \frac{S(S+250)}{S(S+100)}$ , the final value of i(t) is 17,
- A.
- B. 12.5 A
- C. 0.05 A
- D. 1250 A
- 18. A signal m(t) is multiplied by a sinusoidal waveform of frequency fc such that v(t)=m(t) cos 2pfct. If Fourier transform of m(t) is M(f), Fourier transform of v(t) will be
- A. 0.5 M(f + fc)
- B.  $0.5 \,\mathrm{M}(\mathrm{f-fc})$
- C. 0.5 M(f + fc) + 0.5 M(f - fc)
- 0.5 M(f fc) + 0.5 M(f fc)D.
- A voltage wave having 5% fifth harmonic content is applied to a series RC circuit. The 19. percentage fifth harmonic content in the current wave will be
- 5% A.
- B. more than 5%
- C. less than 5%
- D. equal or more than 5%
- Assertion (A): If  $\mathcal{I}(s) = \frac{s(s+250)}{s(s-100)}$ , the initial value of i(t) is 5A 20.
  - Reason (R): As per initial vaue theroem  $\{t, f(t) = \{t, s\}\}$
- Both A and R are correct and R is correct explanation of A A.
- Both A and R are correct but R is not correct explanation of A B.

- C. A is true, R is false
- D. A is false, R is true
- 21.  $\delta(t)$  is a
- A. energy signal
- B. power signal
- C. neither energy nor power
- D. none
- 22. The analog signal given below is sampled by 600 samples per second for  $m(t) = 3 \sin 500$  pt + 2 sin 700 pt then folding frequency is
- A. 500 Hz
- B. 700 Hz
- C. 300 Hz
- D. 1400 Hz
- 23. The signal defined by the equations f(t) = 0 for t < 0, f(t) = E for  $0 \le t \le a$  and f(t) = 0 for t > a is
- A. a step function
- B. a pulse function
- C. a shifted step function originating at t = a
- D. none of the above
- 24. Inverse Laplace transform of is 2575 32+53+6
- A. 2 exp (-2.5 t) cosh (0.5 t)
- B.  $\exp(-2t) + \exp(-3t)$
- C.  $2 \exp(-2.5 t) \sinh(0.5 t)$
- D.  $2 \exp(-2.5 t) \cos 0.5 t$

- 25. Two function g1(t) and g2(t) with correlation of 6 has average power of 4 and 5 respectively. The power of g1(t) + g2(t) is
- A. 9
- B. 21
- C. 3
- D. 15
- 26. A box has 4 white and 3 red balls. Two balls are taken out in succession. What is the probability that both are white?
- A. 4/7
- B. 1/2
- c. 2/7
- D. 1/7
- 27. Z transform is a non-linear operation.
- A. True
- B. False
- 28. A signal g(t) = A then g(t) is a
- A. energy signal
- B. power signal
- C. neither energy nor power signal
- D. insufficient data
- 29. The Fourier series of an odd periodic function contains
- A. odd harmonics only
- B. even harmonics only
- C. cosine harmonics only
- D. sine harmonics only

- 30. If  $f(s) = \frac{29+3}{(2+1)(2+2)}$ , the terms in f(t) will have
- A. e-t and e-2t
- B. et and e2t
- C. te-t and te-2t
- D. none of the above
- 31. An impulse function consist of
- A. pure dc
- B. pure a.c
- C. entire frequency range with constant phase
- D. infinite bandwidth with linear phase vaariations
- 32. As per time displacement theorem in Laplace transformation, displacement in the time domain by T becomes
- A. division by s in the s domain
- B. division by e-sT in the s domain
- C. multiplication by s in the s domain
- D. multiplication by e-sT in the s domain
- 33. Which one is a causal system?
- A. y(n) = 3x[n] 2x[n-1]
- B. y(n) = 3x[n] + 2x[n+1]
- C. y(n) = 3x[n+1] + 2x[n-1]
- D. y(n) = 3x[n+1] 2x[n-1] + x[n]
- 34. If  $f(s) = \frac{s+3}{(s+1)^3+3}$  the coefficient of term e-t in f(t) will be
- A. 1
- B. 0

- C. 0.5
- D. 2/3
- 35. Double integration of a unit step function would lead to
- A. an impulse
- B. a parabola
- C. a ramp
- D. a doublet
- 36. If f(t) = A d(t a), F(s) is
- A. A e-as
- B. A eas
- C. A a e-as
- D. Aa eas
- 37. If  $\left(\frac{273497}{5^2+335}\right)$  is the Laplace transform of f(t) then f(0+) is
- A. (
- B. 97/3
- C. 27
- **D.** ∞

- 38. If f(t) is in volts, then  $F(j\omega)$  is in
- A. volts
- B. volt seconds
- C. volts/sec
- D. volt-sec2
- 39. Assertion (A): If  $I(s) = \frac{29+10}{s(s+2)}$ , the final value of I(t) = 10Reason (R): If  $I(s) = \frac{29+10}{s(s+2)}$ , the initial value I(t) = 2
- A. Both A and R are correct and R is correct explanation of A
- B. Both A and R are correct but R is not correct explanation of A
- C. A is true, R is false
- D. A is false, R is true
- 40. Which of following is recursive system?
- A. y(n-1)
- B. y(n+1)
- C. y(n)
- D. y(n) + y(n + 1)
- 41. In terms of signum function sgn(t), unit step function u(t) =
- A. 1 + sgn(t)
- B. 1 sgn(t)
- C. 0.5 + 0.5 sgn(t)
- D. 0.5 0.5 sgn(t)
- 42. Choose correct option
- A.  $\operatorname{var}(X + Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$
- B.  $\operatorname{var}(X Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$
- C.  $var(X + Y) = Var(X) \times Var(Y)$

- D. Both (a) and (b)
- 43. If  $I(s) = \frac{5(s+25)}{s(s+100)}$ , final value of I(t) is
- A. (
- B. 2.5
- C. 12.5
- D. ∞
- 44. If sequence y(n) = x(-n) then it is
- A. Causal
- B. Non-Causal
- C. Depends on x(-n)
- D. None
- 45. The function  $\delta(t b)$  is
- A. an impulse function
- B. a step function originating at t = b
- C. an impulse function originating at t = b
- D. none of the above
- 46. If Laplace transform of f(t) is F(s), then  $L \begin{bmatrix} d & f(s) \\ dt & f(s) \end{bmatrix} =$
- A. s F(s) f(0-)
- B. 1 Hs) flo)
- C. sF(s) + f(0-)
- 0. 1 F/s) + F/6)
- 47. If  $H(z) = \frac{z(3z-4)}{(z-6.4)(z-2)}$  then system is
- A. casual
- B. uncasual
- C. casual at z = 0.4, 2

, D. uncasual at z = 0.4, z = 2

48. A pulse function having magnitude E and duration from t = 0 to t = a can be represented as

A. sum of two pulse functions

B. difference of two pulse functions

C. difference of two step functions each of magnitude E and one originating at t = 0 and the other at t = a

D. none of the above

49. If 
$$F(t) = \frac{10}{5^2 + 45 + 4}$$
,  $f(t) =$ 

A. 10 te-2t

B. 10 t2e-2t

C. 10 e-2t

D. 5 t2e-2t

50. The DTFT of  $x(n) = \delta(n)$  will be

A. 1

B. 0

C. ∞

D. not defined

## **ANSWERS**

| MX 1 /W | Α | 2  | D | 3  | В | 4  | В | 5      | A |  |
|---------|---|----|---|----|---|----|---|--------|---|--|
| 6       | В | 7  | В | 8  | C | 9  | Α | A 10 · | C |  |
| 11      | C | 12 | Α | 13 | С | 14 | Α | 15     | A |  |
| 16      | Α | 17 | В | 18 | C | 19 | В | 20     | A |  |
| 21      | В | 22 | С | 23 | В | 24 | В | 25     | В |  |
| 26      | С | 27 | В | 28 | В | 29 | D | 30     | A |  |
| 31      | C | 32 | D | 33 | B | 34 | D | 35     | В |  |
| 36      | A | 37 | С | 38 | В | 39 | D | 40     | A |  |
| 41      | C | 42 | D | 43 | C | 44 | С | 45     | C |  |
| 46      | A | 47 | A | 48 | C | 49 | Α | 50     | A |  |